

USDA CEA MARKET TRANSFORMATION STRATEGY

Data-Driven Market Transformation for Efficient, Sustainable CEA

December 2021

Natural Resources Conservation Service

CEA Market Transformation Strategy

Overview

About RII

USDA Funded Project: Data-Driven Efficient CEA

Market Characterization / Recommendations

Market Transformation

Market Intervention Strategies

Benchmarking

Promoting Efficiency

Coordinating Producer Support Systems

Targeting Producers for Intervention

Implementation Plan

ABOUT US

About RII

Objective, data-driven non-profit

Founded 2016 in Portland, Oregon

Expertise in climate policy, utility programs, green building certification, sustainable business, construction & indoor cultivation

In late 2020, awarded three-year grant from USDA to develop KPIs, best practices, standards and a facility performance rating system for CEA

What We Do / Our Mission

We measure, verify & celebrate the world's most efficient agricultural ideas.

Efficiency & Productivity

- Key Performance Indicators
- Benchmarks
- Baselines

Verify

Best Practices & Standards

- Education & Training
- Policies
- Utility Programs

Leadership Recognition

- Case Studies
- ESG Support
- Certification

ABOUT US

Technical Advisory Council

Multi-disciplinary Working Groups aggregate knowledge to support producers and other stakeholders with objective and peer-reviewed data and curriculum on benchmarking resource efficiency

- Guide development of standards
- Shape tools and resources to support best practices
- Advocate for informed policies, incentives and regulations

RII - ACEEE Project
Team

RII CEA TAC Leadership
Committee

RII Technical Advisory Council

EDUCATION and advocacy about best practices for growers

Peer-Reviewed Publications

ABOUT US

Specialized Benchmarking Platform

- **Facility performance** benchmarks aligned with industry-standard KPIs on energy, water & emissions
- **Efficiency plans** to guide continuous improvement of KPIs
- Guidance on how to maximize incentives and support from utilities and governments
- **Portfolio** audits and reports to compare efficiency and productivity of cultivation assets for ESG reporting and investor stakeholders
- **Thought leadership** opportunities to be featured in case studies and conference presentations

Get Verified 💿

Calculated PowerScore

#47974088-21. Indoor. Grantsville. MD. Climate Zone 5A. July 2020 - June 2021

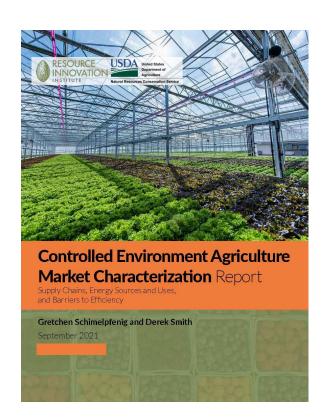
Data-Driven Market Transformation for Efficient, Sustainable CEA

Launched 2021

Funded through 2023 by:

Grant Objectives & Timeline

Scope	2021	2022			2023				
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Market Transformation Strategy									
PowerScore Benchmarking Reports on Energy and Water KPIs, Baselines, & High-Performance Strategies, Pre- and Post-Project Reports									
Best Practices Guides and Case Studies for CEA: Lighting, HVAC, Design & Construction, Controls, Irrigation & Water Reuse		A.							
Best Practices Guidance for Local, State and Federal Policy, Energy Codes, and Industry Standards									
Best Practices Guidance for Utility Program Design & Market Engagement, CEA Excellence Network, CEA Professional Credentialing					(F)			(FX	
Voluntary Certification System and Key Performance Indicators for CEA									


CEA Market Characterization Report

What it is:

- Based on primary and secondary research: lit review, surveys, interviews
- Precursor to Market Transformation Strategy

What it is not:

- Precise
- Exhaustive
- Technology baseline study

Research Objectives

- 1. **Describe the supply chain**, key market actors, barriers to energy efficiency, and the best leverage points for market interventions,
- 2. **Describe the energy sources** used by producers (including on-site renewable energy, microgrids, and back-up generation),
- 3. **Describe the energy and non-energy benefits** realized through implementation of efficiency projects,
- 4. **Identify key market baselines** to be used in evaluating the impact of the market transformation initiative over time.

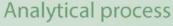
Recommendations

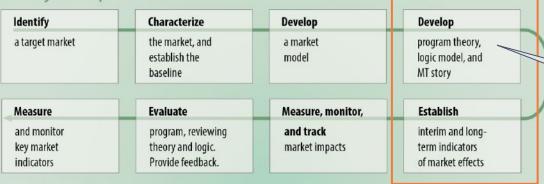
- 1. Benchmark a range of production environments to enable development of energy use baselines.
- 2. Promote the benefits of energy efficiency in ways that are compelling to producers.
- 3. Leverage key market actors to develop coordinated producer support systems.

Target producers effectively based on cultivation approach, geography, power supply costs and size/scale of operation.

About Market Transformation

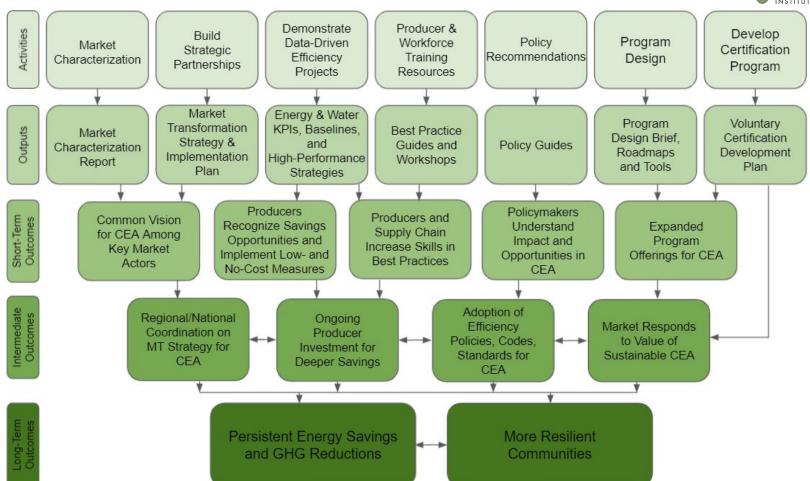
Market transformation is the **strategic process** of intervening in a market to create **lasting change** in market behavior by **removing identified barriers or exploiting opportunities** to accelerate the adoption of all cost-effective energy efficiency as a matter of standard practice.


Market Transformation Components

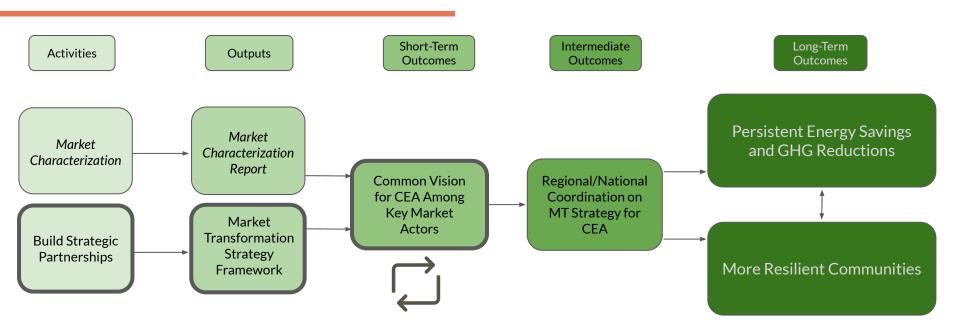

Three **must have** components of any MT initiative:

In-depth knowledge of the targeted energy efficiency market Clearly defined intervention strategy and key leverage points

Policy/regulatory framework supporting the intervention strategy


We are here

Implementation process


Form a marketbased advisory group to help shape and review the program Find market allies to work with the program, and leverage their resources, programs, and tools Work with markets to promote competition. Identify and promote nonenergy benefits Leverage other programs and resources, such as utility resource acquisition programs Plan an exit or transition

Logic Model for Data-Driven Market Transformation for CEA

Market Transformation Strategy Framework

VISION: Sustainable, resource-efficient CEA supported by rigorous data and shared best practices

Lack of data, baselines, and success stories

Supply chain knowledge, skills, and support

Low grower awareness and demand

High first/capital cost and limited incentives

PROMOTING EFFICIENCY

installers and builders to create experts along the supply chain and establish credentialing

program

Demonstrate peer success through case studies, educate producers on energy and non-energy benefits

Engage and educate

SUPPORTING PRODUCERS

Convene policymakers, utilities, and key market actors to develop coordinated producer support systems and industry standards

BENCHMARKING

Benchmark diverse set of producers and facilities to establish baselines and key performance indicators

Create Facility Performance Snapshots

Confirm Key Performance Indicators for CEA

Quantify performance of CEA facilities using specialized key performance indicators for:

- Efficiency
- Productivity

Establish calculation methodology for KPIs

Understand how KPIs apply to various crops

Calculated PowerScore

#47974088-21, Indoor, Grantsville, MD, Climate Zone 5A, July 2020 - June 2021



Figure credit: RII, PowerScore

Get Verified ②

Verify KPIs

Verify Facility Information

Validate data reported by operators, utilities, and building systems to produce accurate ranges of performance

Increase quantity of data read by artificial intelligence

Connect data provider API for direct integration

Performance Snapshot

#47966385-21 CEA, Greenhouse/Hybrid/Mixed Light, Grantsville, MD, Climate Zone 5A, July 2020 - June 2021

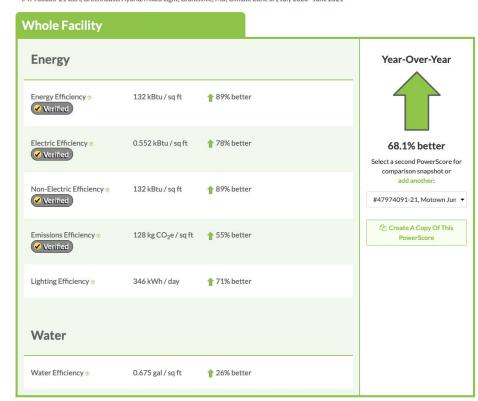


Figure credit: RII, PowerScore

Document Baselines

Capture Market Practices and Performance

Benchmark a range of production environments to enable development of resource use baselines:

- Energy
- Water
- **Emissions**

Establish baseline methodology

Understand baselines for different facility and crop types

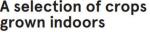
A selection of crops grown indoors

Vine Crops tomatoes, peppers, cucumbers, eggplants

Cannabis

Fruits

Commodities corn, wheat


Microgreens/

Other poultry, forestry seedlings, algae

Other Vegetables

Greens leafy greens, lettuce, spinach

Hops

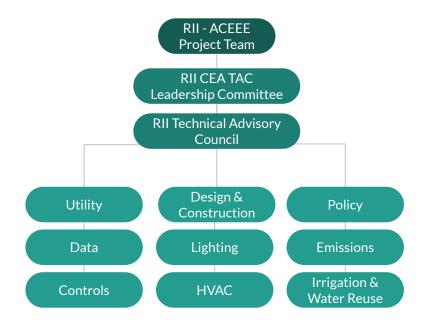
Insects

Strawberries

Flowers perennials, annuals,

herbs

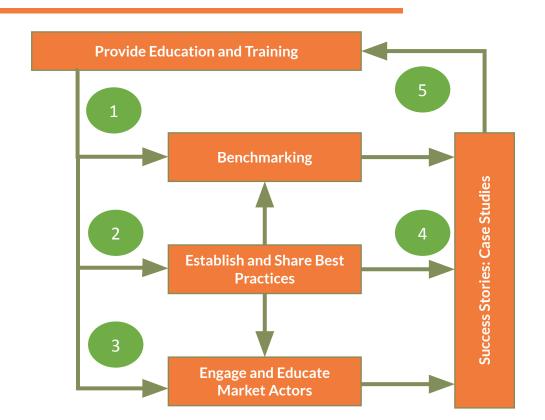
Vegetable **Transplants**



Develop Best Practices Guidance

Promote efficiency benefits in ways that are compelling to producers

New CEA Working Groups:


- 1. Design & Construction
- 2. Lighting
- 3. HVAC
- 4. Automation & Controls
- 5. Policy, Codes & Standards
- 6. Irrigation & Water Reuse

Launch CEA Working Groups

Working Group	Status	Kickoff Month	Collaboration Months	Peer Review Months	Publication Month	Workshop Month
Utility	Active	Sept 2021	Sept - Nov 2021	Nov-Dec 2021	Feb 2022	Mar 2022
Facility Design & Construction	Active	Oct 2021	Oct 2021- Feb 2022	Feb-Mar 2022	May 2022	Jun 2022
Lighting	Active	Nov 2021	Nov 2021 - Feb 2022	Feb 2022	Mar 2022	Apr 2022
HVAC	Recruiting	Dec 2021	Dec 2021 - Mar 2022	Feb 2022	Apr 2022	May 2022
Policy	Recruiting	May 2022	May - Dec 2022	Apr, Aug, Dec 2022	Jun & Sep 2022 Jan 2023	Jul & Oct 2022 Feb 2023
Controls	Planning	Apr 2022	Apr - Jun 2022	Jun 2022	Jul 2022	Aug 2022
Irrigation & Water Reuse	Planning	Aug 2022	Aug - Nov 2022	Jan 2023	Feb 2023	Mar 2023

Build Market Capacity

- Use industry benchmarks to establish high-performance baselines for diverse facilities and crop types.
- Develop and disseminate peer-reviewed best practices guides covering key aspects of resource efficient CEA.
- Develop and present workshops, webinars, and in-depth tutorial videos to engage and educate cultivators, contractors, installers.
- Produce case studies to highlight success stories and demonstrate progress.
- Host curriculum on virtual classrooms to continuously educate producers on energy and non-energy benefits.

Engage and Educate Supply Chain Actors

Establish Credentialing Program

Catalog of CEA best practices guidance for project partners:

- Design & Construction
- Lighting
- HVAC
- Automation & Controls
- Irrigation & Water Reuse

Credential achieved upon completion of required coursework

Continuing education required to maintain credential

Best Practices Guides

Live Workshops

Case Studies

Virtual Classrooms for Producers and Project Teams

RESOURCE INNOVATION

Leverage Key Market Actors

Energy Suppliers

Efficiency Programs

State Governments

Consumers

Investors & Financial Institutions

Industry Organizations

Educational Institutions

Barriers to Energy Efficiency

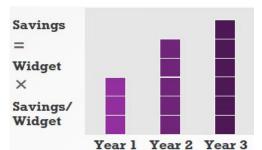
\$

Investors & Financial Institutions

Create Coordinated Producer Support Systems

Provide Understanding, Trust, & Connections

- Emerging technologies can suffer from low producer awareness and trust and efficient products have higher upfront costs
- Connections can help reduce the cost of capital, increase access to education, and offer technical and financial assistance


Table 10: Rating of Barriers to Energy Efficiency

Barrier	Rating	
Upfront costs	14	
Access to capital and financing	9	
General lack of knowledge of efficient technologies	8	
Skepticism and lack of trust in product performance	8	
Lack of executive support for trying something new	4	
Not enough cultivator training on how to effectively use technologies	3	

Flavors of Efficiency Programs

Resource Acquisition

- Achieve near-term savings
- •Targeting specific customers
- Incentives in exchange for energy savings
- ✓ Smaller program scope and scale
- ✓ Greater level of program control
- ✓ Simpler evaluation for program administrator and regulators

Market Transformation

- Long-term savings through structural change
- Target customers and supply chain
- Use multiple market interventions
- ✓ Broad scope of participants and activities
- ✓ PAs have limited control in a dynamic market
- ✓ Evaluation is messier and requires longer planning and measurement timeframe

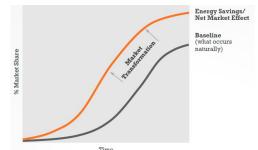


Figure credit: Navigant Consulting. 2019. Energy Efficiency Market Transformation Summit Report. Prepared for ComEd. February. Chicago, IL: Commonwealth Edison

Role of Efficiency Programs in MT

Mobilize the market

- Provide incentives to address cost barriers
- Coordinate with supply chain to increase market availability and access
- Offer training and technical assistance to develop workforce
- Conduct demonstrations to prove technology, build confidence, and address perceived risks
- Leverage national recognition programs

Evaluate, measure, verify savings

- Market baseline: energy performance, equipment types/efficiency
- Indicators of market progress and structural change
 - Increases in stocking/sales; voluntary program recognition
 - Lock-in through codes and standards
- Program attribution: participation, free riders, spillover
- Cumulative energy impact

Incentives for Efficient Technology

Incentives Address First Cost Barriers

Effective programs target incentives to the right market actors to maximize market impact

Manufacturer	Wholesale Distributor	Installer/ Contractor	Customer	
Upstream	Midstr	Downstream		

Example CEA technologies with efficiency incentives:

- Energy screens / shade curtains
- Horticultural light fixtures
- HVAC and dehumidification equipment
- Controls hardware and software for lighting and HVAC systems

CEA Technology Purchasing

Targeting Incentives for CEA Technology

Upstream:

Strong option for all technology types

Midstream:

Important for lighting, water management, controls & automation

Downstream:

HVAC uniquely suited to upstream and downstream

Technology Type	Influencer: Technology Manufacturers	Influencer: Manufacturer Sales Representatives	Influencer: Technology Distributors	Influencer: CEA Facility Staff
Horticultural Lighting	Х	Х	Х	
HVAC	Х			Х
Water Management	Х		Х	
Controls & Automation	Х	Х	Х	

Technology solutions being considered in the next 12 months

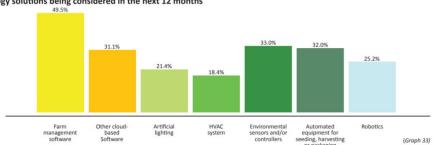


Table credit: RII (top right); Figure credit: WayBeyond (bottom right)

Industry Organizations

Robust Standards for CEA

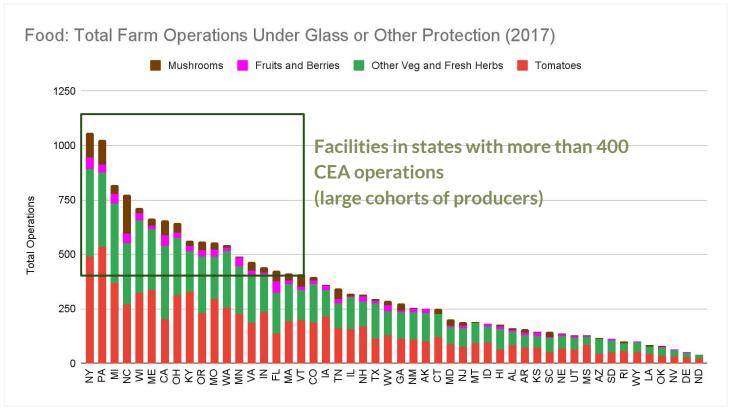
Convene Key Market Actors to Develop Standards

Effective industry standards enable:

- Testing of emerging technologies
- Third-party certification of equipment
- Specification of minimum efficiency requirements in regulations and energy codes
- Sharing of industry standard practice and high-performance strategies by educational organizations

State Governments

Educational Institutions



Targeting Producers: Food State Operations Under Protection

Note: Minimum of \$1,000 sales to be counted. States with too few respondents, (D) or -, counted as 0

Categories:

- Family or Individual
- Partnership
- Corporation
- Other
 Estate, trust, prison farm, grazing association,
 American Indian
 Reservation

Targeting Producers: Food State Operations Under Protection

Priority states:

NY
 PA

3. MI

NC
 WI

6. ME

7. CA

8. OH

9. KY

10. OR

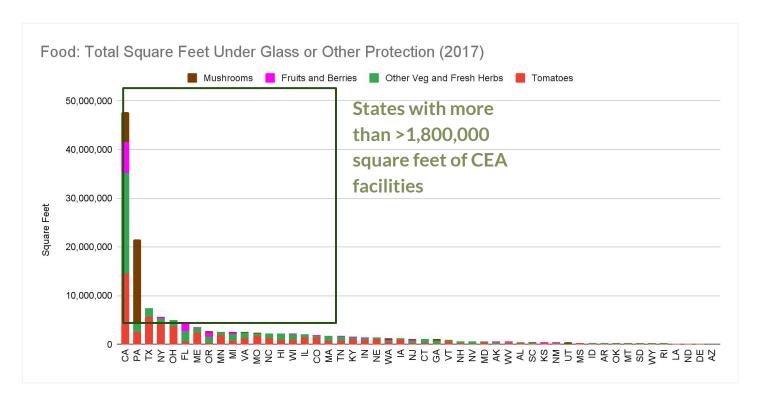
11. MO

12. WA

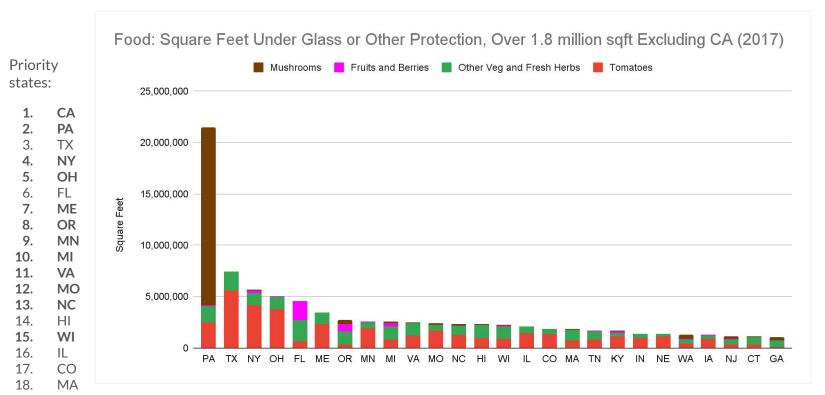
13. MN

14. VA

15. IN


16. FL

17. MA


18. VT

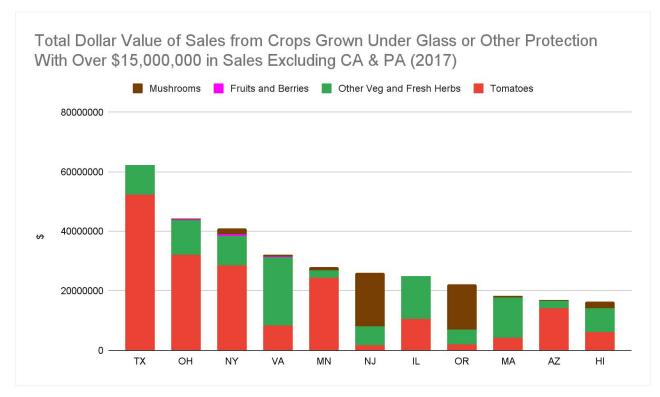
Targeting Producers: Food Square Feet Under Protection



Targeting Producers: Food Square Feet Under Protection

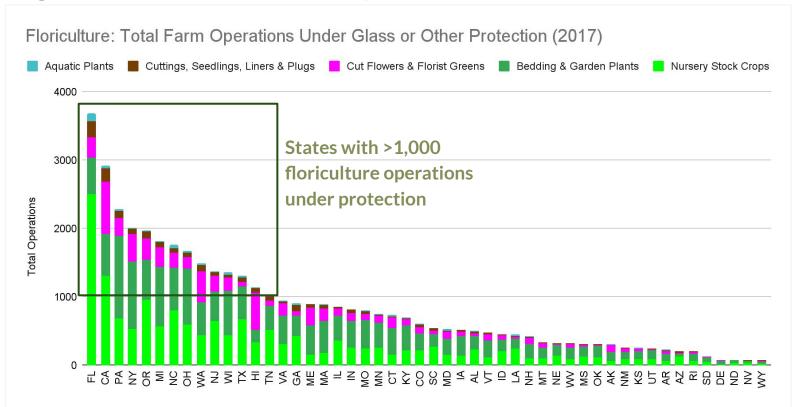
Data credit: USDA, 2019. Note: CA excluded as outlier for data visualization.

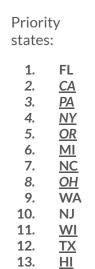
Targeting Producers: Food Sales Volume of Operations Under Protection



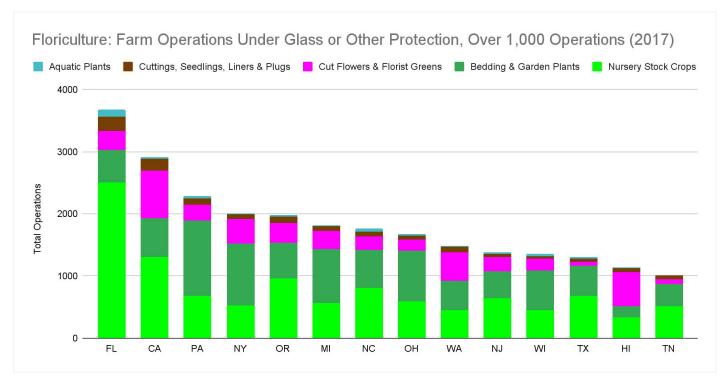
Targeting Producers: Food Sales Volume of Operations Under Protection

Priority states:

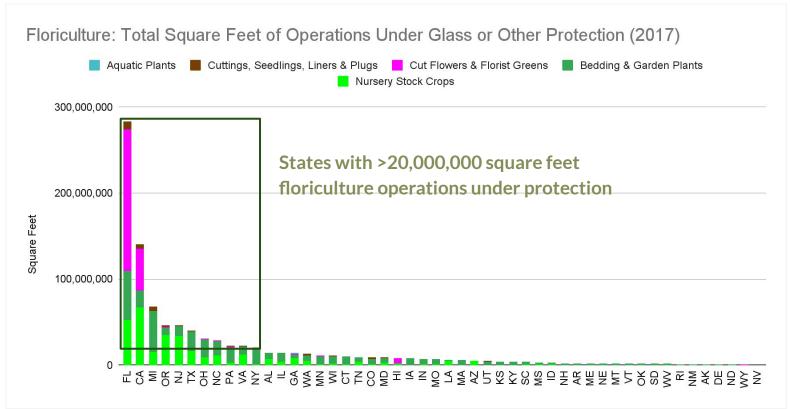

- <u>PA</u>
- <u>CA</u> TX
- <u>OH</u>
- 5. NY
- <u>VA</u>
- <u>MN</u>
- NJ
- IL
- 10. OR
- 11. MA
- 12. ΑZ
- 13. HI


Data credit: USDA. 2019. Note: PA and CA excluded as outlier for data visualization

Targeting Producers: Floriculture Operations Under Protection



Targeting Producers: Floriculture Operations Under Protection



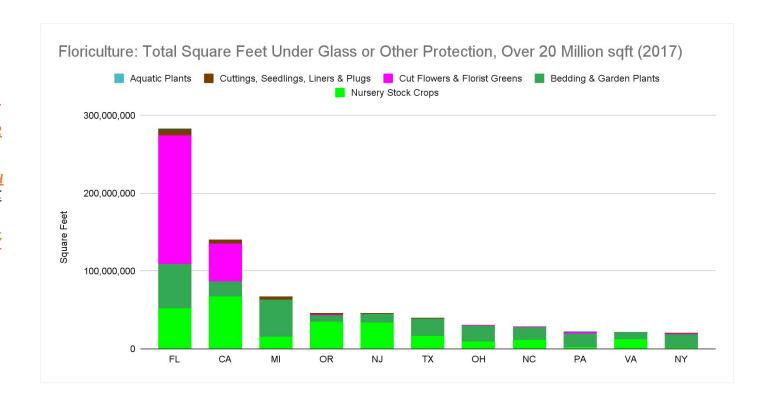
14.

TN

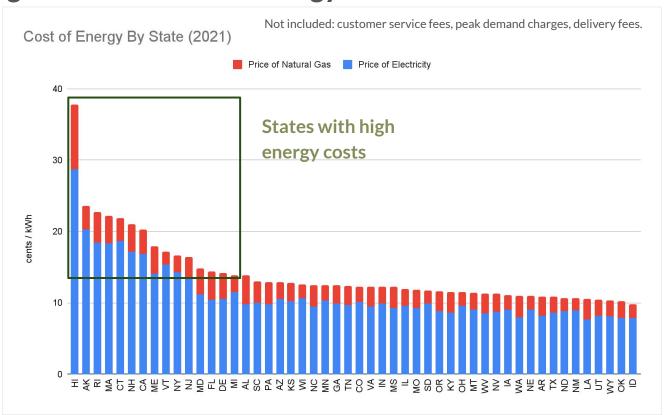
Targeting Producers: Floriculture Square Feet Under Protection

Targeting Producers: Floriculture Square Feet Under Protection

Priority states:


FL <u>CA</u> MI <u>OR</u>

5.


NJ TX OH NC

<u>PA</u>

10. <u>VA</u> 11. NY

Targeting Producers: Cost of Energy

Data credit: EIA, 2021

Targeting Producers: Most Expensive Energy

Priority states:

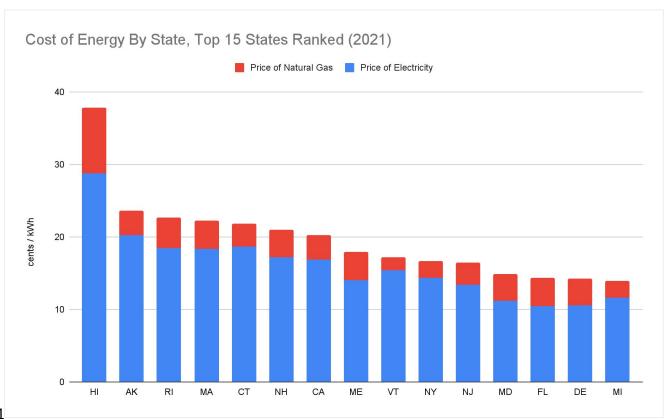
HI
 AK
 RI

4. <u>MA</u>

5. CT 6. NH

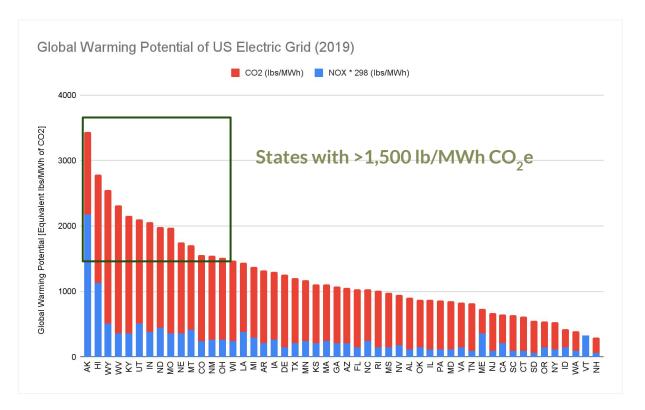
7. <u>CA</u>
 8. <u>ME</u>

6. <u>ME</u> 9. VT


10. NY 11. NJ

12. MD

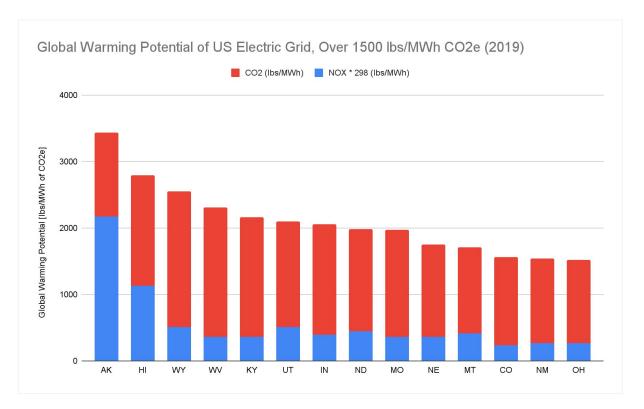
13. <u>FL</u>


14. DE

15. <u>MI</u>

Data credit: EIA, 2021

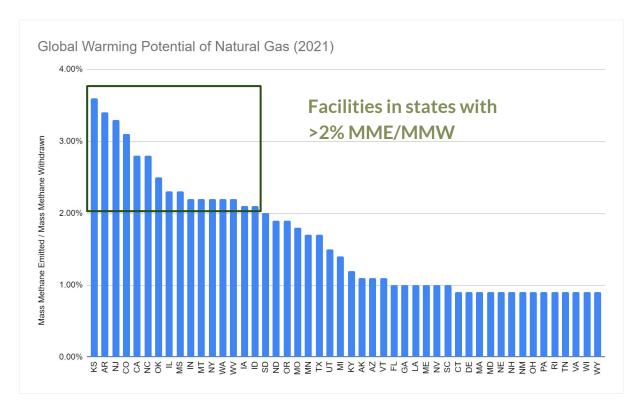
Targeting Producers: Greatest GHG Emissions from Electricity


Data credit: EIA, 2019

Targeting Producers: Greatest GHG Emissions from Electricity

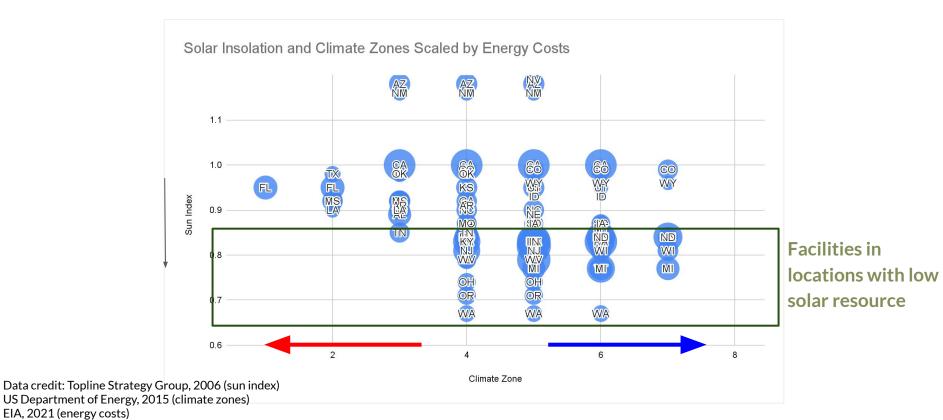
Priority states:

NM


Data credit: EIA, 2019

13.

Targeting Producers: Greatest GHG Emissions from Natural Gas


Priority states:

- KS
- AR
- NJ CO CA NC
- ОК
- 8.
- <u>|L</u> MS
- 10. IN MT 11.
- NY
- 13. <u>WA</u>
- 14. WV
- 15. IΑ
- 16. ID

Targeting Producers: Demand for Lighting & HVAC

EIA, 2021 (energy costs)

Note: AK and HI excluded as outliers for data visualization.

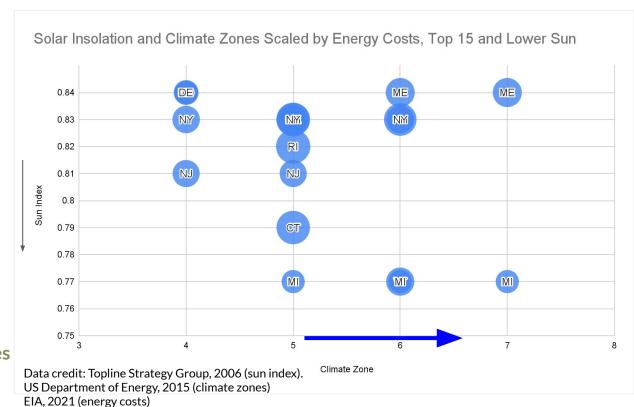
Targeting Producers: Demand for Cooling & Heating

EIA, 2021 (energy costs)

Note: AK and HI excluded as outliers for data visualization.

Targeting Producers: Greatest Demand for Lighting & HVAC

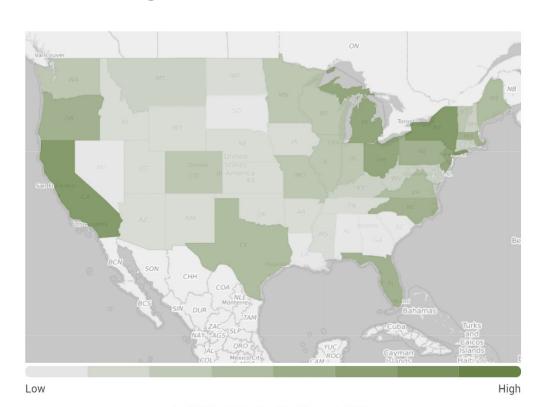
Priority states:


- 1. RI
- 2. <u>MA</u>
- 3. **CT**
- 4. NH
- 5. <u>ME</u>

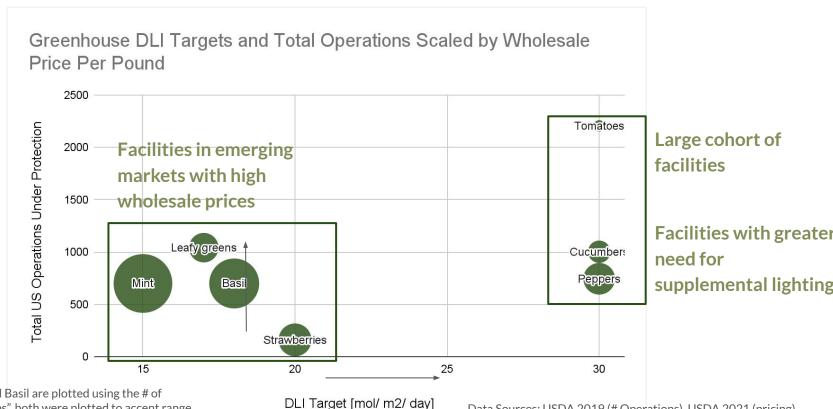
9. MD

10. DE

States with large cohorts of producers with large sales volumes with demand for lighting and HVAC

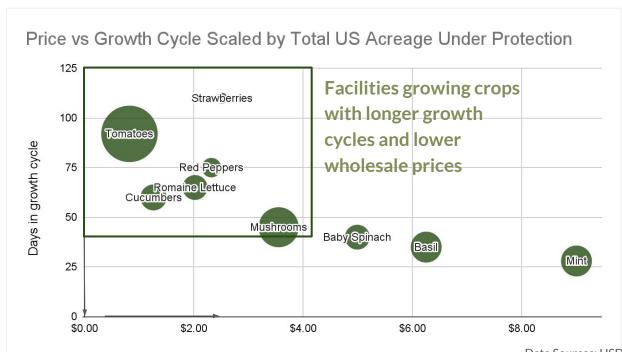


Note: AK and HI excluded as outliers for data visualization.


Targeting Producers: Target States

Priority states:

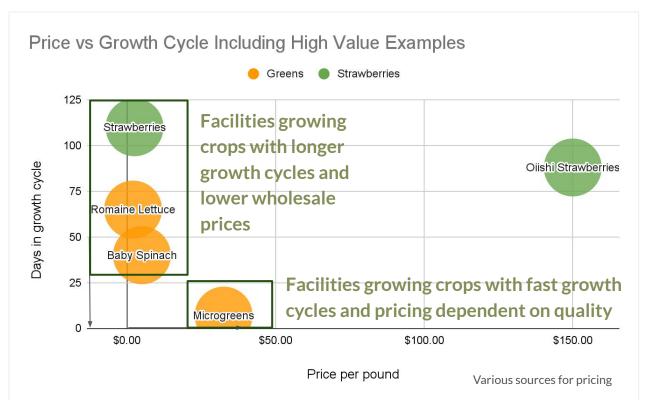
- 1. NY
- 2. CA
- 3. MI
- 4. NJ
- 5. OH
- 6. FL
- 7. HI
- 8. MA
- 9. NC
- 10. OR
- 11. PA
- 12. ME
- 13. TX
- 14. VA
- 15. CO


Targeting Producers: Greenhouse Producers

Note: both Mint and Basil are plotted using the # of operations for "herbs", both were plotted to accent range for herbs

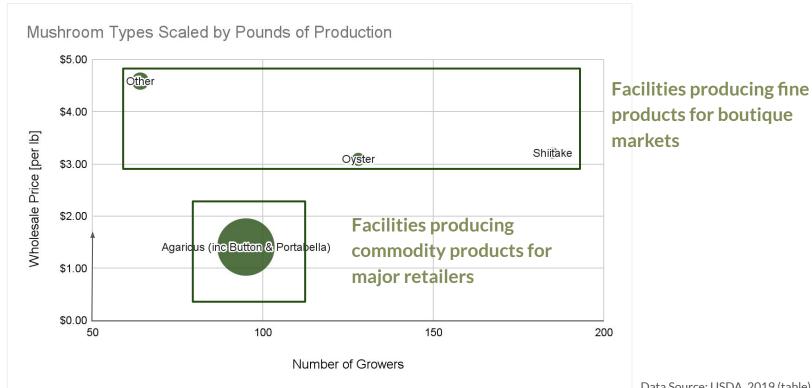
Data Sources: USDA 2019 (# Operations), USDA 2021 (pricing), various sources for DLI

Targeting Producers: Faster Harvests & Higher Prices


Note: both Mint and Basil bubble size is # of operations for "herbs", both were plotted to accent range for herbs.

Price per pound

Data Sources: USDA, 2021 (pricing), USDA, 2019 (Acreage), various sources for days in cycle


Moving cultivation into controlled environments, crops can be grown out of season, which increases wholesale price

Targeting Producers: High Quality, High Prices

As quality increases in CEA production, wholesale price also increases, especially for indoor producers

Targeting Producers: Mushrooms

Data Source: USDA, 2019 (table)

Targeting Producers: Priority Crops

Higher Priority

Crop	Class
Vine crops	Tomatoes
Mushrooms	Mushrooms
Floriculture	Nursery stock crops
Vegetables and herbs	Leafy greens
Vegetables and herbs	Microgreens
Vegetables and herbs	Fresh herbs
Vine crops	Cucumbers
Vegetables and herbs	Peppers
Floriculture	Finished bedding crops
Berries	Strawberries
Berries	Other berries
Cannabis	Нетр

Lower Priority

Targeting Producers: Type & Size of Facility

Value of Efficiency Varies

Influenced by:

- **Facility Size**
- Facility Type
- Crop Type
- **Energy Demand of Crop**

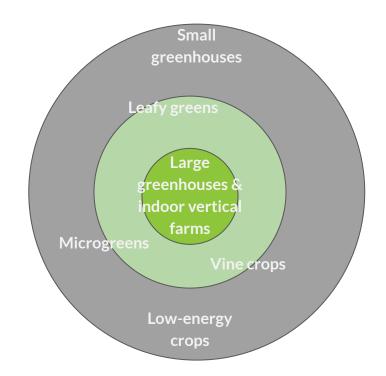


Figure credit: RII

Market Transformation Implementation Plan

Acknowledgements and Suggested Citation

Acknowledgements

This document was made possible through the generous support of the United States Department of Agriculture. Internal contributors include Carmen Azzaretti and members of RII's CEA Leadership Committee. The authors would like to thank Jen Amann of ACEEE for her strategic contributions. We also appreciate Ben Somberg of ACEEE for his help launching this document. We gratefully acknowledge external reviewers, internal reviewers, colleagues, and sponsors who supported this report. External review and support do not imply affiliation or endorsement.

Suggested Citation

Schimelpfenig, G., Smith, D. 2021. Controlled Environment Agriculture Market Transformation Strategy and Implementation Plan. Portland, OR: Resource Innovation Institute.

https://catalog.resourceinnovation.org/item/controlled-environment-agriculture-market-transformation-strategy-446270.